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Wavelet-Galerkin Discretization of Hyperbolic Equations
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The relative merits of the wavelet-Galerkin solution of hyperbolic
partinl differentinl equations, typical of geophysical problems, are
quantitatively and qualitatively compared to traditional finite dilfer-
ence and Fourier-pseudo-spectral methoids, The wavelet—Galerkin
sglution presented here is found to be a viable alternative to the
two conventional techniques.  ® 1995 Academic Press, Inc.

1. INTRODUCTION

In the past two decades interest in wavelets has been nothing
short of remarkable. In the areas of time series analysis, matrix
compression, and approximation theory, wavelets have carved
out a practical niche. In the solution of differential equations,
however, wavelels have not, thus far, been able to replace other
more traditional techniques such as polynomial finite-element
methods, except when nonlocal operators are involved. This is
because (a) at present, wavelets are capable of dealing in a
general way only with the simplest of boundary conditions; (b)
vnti] recently there were no lechniques to compule the inner
products of a wavelet Galerkin approximation easily and inex-
pensively: (c) the advent of mare powerful computers has en-
abled researchers 1o streich the computational usefulness of
more traditional methods; (d) wavelet multiresolution analysis
can. in most instances, be part of a postprocessing stage in
the solution of the differensial equation; and () adaptive and
minktigrid solvers are available for linite-ditference and finite-
clement technigues. In our estimation, the usefulness of wave-
lets in the selution of differentia) cquations s still a matter 1o
be completely established. This study sheds some light on the
practical use of wavelets in the solution of hyperbolic equations.

Recent developments in wavelet techniques |1) have made
the wavelet-Galerkin procedure a viable option for the soiution
of some classes of partial differential equations. In this study
we compare a Galerkin procedure based on the use of periodized
Daubechies scaling functions with standard numerical methods
such as finite difference and Fourier pseudo-spectral methods.
Other siudies that compare the wavelet—Galerkin are [2-4] and,
in particular, |5]. In this last paper, Weiss compares wavelet—
Galerkin methods with Fourier pseudo-spectral methods and
concludes that the wavelet Galerkin method is faster than the de-
aliased Fourter pseudo-spectral solution of a two-dimensional
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Euler system and is capable of holding onto the exact solution
for a considerably longer time span than the Fourier solution,

The specilic hyperbolic problem to be considered is o varian
ol the Boussinesq system [6]. This system was chosen because
it has many of the ingredients ol hyperbolic equations that arise
in geophysical problems, In scaled variables the Boussinesqg
system (BQS) is
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to be solved on the interval x € [0, 1] for t > 0 subject to
periodic boundary conditions, and initial conditions n(x, 1 =
0) = E"x) and u(x, t = 0) = U"x). In the geophysical context
the O(l) variables u(x, {) and z = n(x, £} are thought of as the
depth-averaged first-order velocity and wave displacement over
z = 0, regpectively, for weakly nonlinear shallow water disper-
sive waves traveling over a bottom topography z = —fi(x) that
is periodic in x.

Equation {1) admits bidirectional, dispersive, weakly nonlia-
ear wave sojutions. The degree of nonlinearity is controlied by
the parameter ce <€ 1 and the dispersiveness by parameter 3 <€
1. By setting both parameters to zero, Eq. (1) becomes the
linear wave equation (WE). The shallow water wave equation
{SWWE) is obtained by letting 8 = 0 and & 0. The bottomm
lopography h(x} is O(1); but when a # 0 and 8 # 0, the
additional restriction on the bottom topography is that its deriva-
tives with respect to x have size comparable to «. Aside from
a dissipative term, the model is seen to cover a variety of
geophysically relevant phenomena.

To make the discretization comparison reasonable and under-
standable, we have not fine-tuned each of the approximations
under consideration. For example, we did not use high order
methods, preconditioning techniques for the inversion of local
operators, etc. Furthermore, we employed the same time discre-
tization technique for all three methods. We have chosen the
leap-frog method [7]. owing to its simplicity; its wide use, such
as in applications in climate and weather dynamics [§-10]; and
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its nondissipative properties. The first time step is accomplished
with a backwards Euler step. Since the above scheme is prone
to exhibit growth of the so-called leap-frog computational mode
[8], two time-consecutive sets of solutions are averaged periodi-
catly,

Appitcation of the leap-frog scheme to Eq. (1) vields the
semi-discrete sysiem

= 7t — 2 Af[(hRD), + a@R). T
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with L = (I — #*@°3,,), where t = n At, Ar is taken as fixed
during the integration, n = 0, 1, 2, ..., and the tilde variables
Frx) = fix, n A,

In Section 2 we briefly present the full discretization of Eq.
{2) using finite difference (FI) and the Fourier pseudo-spectral
(FS) schemes. Section 3 presents the wavelet—Galerkin (WGQG)
method in full detail. Qualitative and quantitative comparisons
are presented in Section 4. Section 5 summarizes what we have
been able to learn about the merits and pitfalls of the WG
scheme, as applied to hyperbolic problems, and sets the stage
for a future paper on the use of the WG scheme to explore
orographic effects on shallow water waves. Appendix A dis-
cusses some aspects of the evaluation of the inner products that
arise in the wavelet-Galerkin approximation. Technical details
related to the execution of this study appear in the Appendix B.

2. FINITE DIFFERENCE AND FOURIER PSEUDO-
SPECTRAL DISCRETIZATION

The FD spatial discretization of Eq. (2) for x € [0, 1], subject
to periodic boundary conditions on u and 7, will be performed
on a uniform spatial grid. Let x; = j Ax, where Ax = 1/N and

J=10,1,.., N — 1. Defining the fully discrete variabie, in
terms of the tilde variables ff = f7(j Ax), the discrete FD
system is
24
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with boundary conditions and intial data

My = Uy
= "
hy = hy
W = U}
n = E.

The Fourier approximation of Eq, (2) will be performed
pseudo-spectrally [111. Define the discrete Fourter transform
pair

Py = Ef( x;) exp(—ikx)

Ni2-1

Py =2,

k=~Ni2

f k )exp(zkx)

where x; = 2aj/N, with j = 0, 1, ..., N — 1. Projecting Eq. (2)
into Fourier space and exploiting orthogonality, we obtain

k) = Nk - k2 Athu (k) — k2 AF"“"(k)
) = 00 — K2 AriPR) — ik AT (4)
%K) = fr(ky — BRI,

with —N/2 = k < N/2. For a flat bottom, the last equation in
Eq. (4) reduces to

D7(ky = {1 + BRHI(K). 5

Hence, in this special case the operator L 1s easily invertible
in the FS approximation. The initial data is

k) =
8°(k) =

Bk
0ok).

Since the dependent variables are real, the discrete Fourier
transforms are performed using real FFTs. Possible aliasing
that may arise from the evaluation of the nonlinear terms was
minimized by zero-padding the upper half of the spectrum since
the nonlinear serms are quadratic.

3. WAVELET-GALERKIN DISCRETIZATION

Two discretization alternatives exist. The system can be
treated either as a fully Galerkin procedure or as a mixed
Galerkin—collocation problem. The presentation will be limited
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to the full Galerkin implementation; however, a few remarks
on the mixed procedure are in order. In the mixed method,
nonlinear terms as well as linear terms with spatially varying
coefficients, are evaluated by collocation in a manner analogous
to FS. Namely. one projects the appropriate variables back to
real space, forms the nonlinear terms or the terms involving
products of field variables and space-dependent coefficients and
then projects these back to the trial space, thus preparing the
system for the next time integration. The advantages of this
technique are twofold: (a) simplicity of the resulting equations,
since these invariably involve simpler inner products as com-
pared with the full Galerkin procedure; (b) the mixed procedure
has little or no aliasing problems as compared to the FS. The
main disadvantage of the Galerkin—collocation method is that
the operation count per lime step is significantly higher than
its Galerkin counterpart, which is especially troublesome in
hvperbolic problems.

Our Galerkin procedure uses a class of compactly supported
scaling functions introduced by Daubechies [12]. The scaling
functions are determined by a genus index DN and a set of
scaling parameters {c, : 0 = & = DN} that define the generator
function ¢(x) through the scaling relation

oN=1

H) = > cp2x — k).

k=0
For each 0 = j we set
dilx) = 202 — by foar D=k <2

If one sets ¥/ = span{pi : 0 = k << 27}, in [13] it is shown
that {¢} can be periodized and made to form an orthonormal
basis for V/ € LY0, 11, with UV = L0, 1] and NV/ = 0.
Moreover, the subspaces V¥ are nested, so that V/ C V&L If
one lets W/ denote the orthogonal complement of V¥ in V/*', it
1s shown in [13] that W/ is spanned by an orthonormal set of
wavelet functions = 272/ — k), where the generator
wavelet ¢(x) is defined by

DN=2

Px) = > (= D d(2x + k).

i==1

The base generators ¢(x) and i(x) have support [0, DN —
11 and every polynomial of degree X = DN/2 lies in the space
V?, which is equivalent to (x) having DN/2 vanishing mo-
ments. The Daubechies class s distinguished by having this
interpolation property and the smallest possible support. Thus,
from the interpolation property, we see that ¢(x) has at least
DN/2 continuous derivatives. As mentioned in Qian and Weiss
[14], ¢(x) is in the class C” with y at least 0.55DN.

Consider a sei {2} that spans the space V?[0, 1} C L0, 1].
A multiresolution is effected by noting that the space V» O
vl D .- D V! 33 VO For the Galerkin approximation of the
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hyperbolic problem, the field variables are projected into the
space of trial functions belonging to V. When we use test
functions from the same space, a system of differential equa-
tions in time for the coefficients of the field variable results
when the inner products (-, -) are evaluated and orthogonality
among the elements of V7 is used. In this study the evolution
equations are solved at scale p determined by the resolution of
the space V7. If, at any time, a multiresolution is desired, this
can be performed as a postprocessing step or as an adjunct calcu-
lation.

In what follows, we project the semi-discrete real variable
F, say, into V7 so that

N=i
iy = ;ﬂ'qbf(zq), (6)
=0

where f7 = {f*, ¢,). For simplicity of notation it will be assumed
in the remainder of this study that the ¢’s are of resolution
N = 27 and genus DN.

The weak formulation of the serni-discrete system is obtained
by substitating Eq. (6) into Eq. (2), multiplying by a test func-
tion ¢, € V7, and integrating

@, ) = {7 ) — 2 At (i), o)
= 2 Ma((@H"), o
O™, G = (7", b — 2 AKTE, b — Arad@T"Y,, o)
(0", e = (", by — BHIH o).

N

Following the convention in {1, 13], we refer to the inner
products as connection coefficients:

0 = (. d0)
Ol = (i, di)
O3 = (. B/ D)
Q30 = (oh, B
U0 = (i, i)

l

The most expedient strategy available for the evaluation of
these connection coefficients is given in {I]. A brief summary
on the computational procedure is provided in the appendix of
this paper. The connection coefficients should be precomputed,
and the resulting tables are then read in the time-marching pro-
cedure.

After integrating by parts and exploiting periodicity, the full
Galerkin implementation is
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with 0 = k < N — 1, where b, ¢, and a,, are the expansion
coefficients associated with %, v, and u; while A, and (#?), are
associated with the bottom topography h, and its square. The
initial data for the wavelet—Galerkin scheme is

by = Pr(EYx))
ai = P(Ux)),

where 7 is the orthogonal projection operator to the space V7.

By a change of variables the last two connection coefficients
in Eq. (8) can be expressed in terms of elements of the same
connection coefficient array [13], so that the last expression in
Eq. (8) is transformed into

=
1
=
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01, 0,1,
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=
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When h(x) = 1, the above equation can be further simpiified to
#-

ch=ap+ B Y aidt. &
i=0

4. COMPARISON STUDY

We compare the methods on three types of hyperbolic equa-
tions: the wave equation (WE), the shallow water wave equation
(SWWE), and the Boussinesq system (BQS). To effect a com-
parison, we define a merit value based on two factors: the
memory resources M and the wall-clock time T. In making a
comparison we first establish a desired level of accuracy as
follows: for a given N and Ar we monitor three norms of the
solution at some time 7, the final integration time. Our criterion
for accuracy is established by demanding that each of the three
norms /;, I, and 1, of the solution agree, to three decimal places
for the WE, and to four decimal places for the BQS. For each
method, T is the time required to obtain a soluticon to this level
of accuracy and will require storage M. Thus, we define the
computational efficiency merit value

1

T
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TABLE I

Storage Requirements

Problem FD FS WG
WE SN SN SN
SWWE SN 9N N
BQS SN + 3N aN + (.75N? TN + IN[DN - 1}

Our determination of an acceptable solution was based on
searching among the parameter values At = 0.001/2"and N =
1/24. We report the largest Af and the smallest N encountered
in meeting the accuracy criteria. This determines 7 and the
corfesponding M.

The storage requirements M depends on M. For the three
methods as a function of the type of problem, the relation
between M and N is given in Table 1.

The numbers reflect “‘common’ storage requirements as
opposed to optimal requirements. The second number in the
BQS row represents the memory requirements for the operator
L for each method.

In order to simplify the comparison, the bottom topography
will be set, for the remainder of this study, to k(x) = 1. However,
although the inversion of L when / = 1 is trivial and exact in
the FS case as shown in Eq. (5) and simpler for the WG using
Eg. (9), neither of these advantages will be invoked in the
comparison of the three implementations.

4.1. The Wave Equation

Table IT shows a comparison of the computational efficiency
and the energy E of the three methods on the WE problem.
The last four entries correspond to the WG of genus DN. The
initia} data for this experiment was the cubic pulse

1 1
A(l P ] R "“O'SI) forjr — 0.5 > o
B = a T
0, otherwise, (10)
Ul= g2
TABLE 11

Computational Efficiency for the Sclution of the Wave Equation

Method N At T Cer E

FD 512 1.0(—3) 41.40 9.4354(~6) 1.000178
FS 32 1L.O(—3) 7.28 8.5852(—4) 0.999972
DN4 128 1.0(~3) 54.67 2.8581(—5) 1.000388
DN6 128 1.0(-3) 88.24 1.7707(=5) 1.000470
DN% 128 10(-% 115,32 1.3549(—5) 1.00047%
DN16 64 2.0(—3) 90.59 3.4496(—5) 1.000472
DN20 64 1.0(—3) 272.05 1.1487(—5) 1.000478
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-0.1 - : .
0.1 0.3 0.5 0.7 0.9
FIG. 1. ‘WG DNG6 soluticn of the wave equation at t, = 2; N = 32 (solid,

with oscillatory outskirts), and ¥ = 128 (dashed).

with A = 0.7 and ¢ = 0.1. The integration is carried out to
t = 2, at which time the solution should be an exact replica
of the initial conditions.

For this particular initial data we found that the three methods
were most successful in reaching first the /, norm, second in
reaching the sup norm, and last in reaching the /.

To within the discretization size, all methods were capable
of predicting correctly the location at which the sup norm is
expected to be. It is also noted that conservation of the total
energy is easily achieved, even when the computed solution
looks unacceptable, namely when the solution has been under-
discretized. The most salient feature of an underdiscretized
solution is the appearance of dispersive effects. Figure 1 illus-
trates the WG DN6 solution at 1 = 2 in the underdiscretized
case: Ar = 0.001, N = 32. Superimposed on the underdiscre-
tized solution in Fig. 1 is the converged solution reported in
Table 1I1.

Figure 2 shows the time evolution of the bidirectinal linear
wave with a numerically induced dispersive tail resulting from
underdiscretization. In this figure ¢, = 2.2, Az = 0.001, N =
32, and DN6. The FD, as is well known, will exhibit a very
similar behavior when underdiscretized. The cost comparison,
which is 1/Cy, of the three methods for the WE problem is
shown in Fig. 3, as a function of N. In this cost comparison
we do not consider the accuracy of the solution.

4.2, The Shallow Water Wave Equation

For the shallow water wave equation with o = 0.1, the initial
data is given by Eq. (10), with A = 1.0 and o = 0.1. The

RESTREPG AND LEAF

SR
TR
\w

5

8
AN
T
)
@@
A
W
)
W
1

3
R
o
&
N
3

)

3
@
a0
esﬁ N
N

T
\\\\\\
N

e
)
B

-

W

J
3
N

A

3
W
N
SR

»
B
s
R

“&
XA
.
o
ol

N

S5

s
BN
N

5

SR
RN
W
R

ol o =

20

35

time
100 g x

FIG. 2. WG DNG6 solution of the wave cquation; A¢ = 0.001, ¥ = 32.

integration time was ¢ = (.64, which was sufficient to make
the nonlinear effects very obvious in the solution. The sclution
is a bidirectional steepening wave. Table IIT displays the results
of the timing experiment. The last two columns show the loca-
tion X, to within 1/N, of the sup norm and the value of the
norm. For the SWWE we did not attemipt to achieve similar
norms in all methods, but rather monitored the quality of the
shape of the solution and the size of the I, error.

Figure 4 shows the qualitative differences between the three

18+07 T ]

1e+06 | 4

1e+05 | P

(11C)

le+04 .

1e+03 ¢ E

.

1e+03

1e+02 L

1e+02
N

FIG. 3. Cost comparison of the three methods for the WE: FD (circles),
FS (stars}, DNVG (squares), DVE (crosses), DN16 (triangles), ¥ = 32, 64,
128, 256.
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TABLE IIT
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Computational Efficiency for the Solution of the Shallow Water Wave Equation

Method N At T Cur E X I
FD 2048 10(—4) 2360.2 1.1681(—8) 0.98840670 0.2217 0.887600
FS 1024 1.0(—4) 846.68 1.2826(=7) 0.98067046 0.2090 0.731428
DN6 2048 5.0(—5) 57521.2 1.2127(-9) 0974146 0.2094 0.745228
DNL6 2048 1.0(—4) 423244 1.6481(—9) 0.990746 0.2183 0.774571

methods in the calculation of the shocks at + = 0.64. At the
end of the computations the solutions were fiitered twice using
a [-2-1 spatial low-pass filter. The filtered solutions appear
in Fig. 4. The noise could have been curbed significantly in all
the solutions if an appropriate implicit time integrator replaced
the leap-frog technique used in this study. The parameters for
each of these curves appears in Table III. As expected, we
found that the smaller wave (not shown) is very well captured
by all three methods, but they handled poorly the high amplitude
porticn of the solution which is featured in Fig. 4, The phases
of the FD and the FS are the same, whereas the phase of the
WG solution is ahead of the aforementioned solutions. The
shape of the unfiltered solutions is quite different: high fre-
quency oscillations are significant in the WG case but limited
to the neighborhood of the shock front, and they are smaller

"0.01 0.1 0.21
X

FIG. 4. Comparison of the three methods in the solution of the shallow
water wave equation. Portion of the profile at r = 0.64: FS (lefi-most, solid),
FD (dashed), D16 (right-most. solid). Execution parameters are given in
Table I

in magnitude in the FS solution, but present, throughout the
domain. The second-order FD solution, on the other hand,
shows large oscillations, but these are only present in the imme-
diate vicinity of the shock front. As shown in Fig. 4, the filter
has virtually eliminated the high frequency oscillations of the
FS and significantly improved the situation for the WG solution.
We found that the oscitlations in the WG solutions could be
eliminated to the same degree as the FS solution shown in the
figure if the data is filtered once more, The FS method is clearly
most efficient and the FD best able to capture the shape of
the solution.

For the same problem Fig. 5 illustrates the differences be-
tween the methods when the same values of N and Ar are used
in all three methods. The plot was obtained using Ar = 1074,
with N = 1024. The WG solutions do not have the oscillations

“0.01 a1 D21
X

FIG. 5. Comparison of the three methods in the solution of the shatlow
water wave equation. Portion of the profile at 1+ = 0.64: FS (solid, small
oscillations), FD (solid, large oscillations), DN6 (dash), DN16 {dash-dot);
N = 1048, Ar = 1074
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100 o x

FIG. 6. ‘WG DN6 Boussinesq solution for n: ¥ = 128, Ar = 0.002. The
time axis, in arbitrary units, increases toward the viewer.

present in the FS; however, the shock is not as steep. The
steepness in the WG solution was less severe in the case
DN = 16. The milder steepness of the WG method means that
the location of the x,, is very poorly predicted. The FD is next
in getting this location; however, it suffers from poor shape-
capturing characteristics. The FS is best, overall; however, the
solution has a great deal of high frequency oscillations which
propagate away from the shock and are present throughout
the whole solution. Since the energy was slightly smaller in
magnitude in the WG case than in the other methods, it may
indicate that the dissipation was significant enough to affect
the amplitude of the solution and thereby the velocity of the
solution. This could account for the significant phase error.

We performed experiments with initial data with noncompact
support. We found that the FD method had a significantly worse
phase lag than reported in the above experiments. In fact, this
phase lag was also significant if the solation, for some intitial
data, eventually loses its compact support. This phase problem
was absent in the FS and very minimally present in the WG
experiments for noncompact solutions.

4.3, The Boussinesq System

For the computation of the Boussinesq system solution with
a = 0.1 and 8* = 0.03333, we compared the solutions of the
three methods at + = 0.5 for initial data,

U = 0.1 sin{4mx)

(1)
E°=0.5U°%.
The solution, up to 4 = 2.2 with @ = 0.1 and 8% = 0.1, is
shown in Fig. 6 for the WG method with DN = 6, At = (.002,
and N = 128.
The computational efficiency for the Boussinesq system is

RESTREPO AND LEAF

TABLE IV

Computational Efficiency for the Selution of the
Boussinesq System

Method N Ar T Canr

FD 256 1L0(-3) 14,75 3.3104(—5)
FS 128 2.0(—3) 21.30 3.4932(—6)
DN6 128 2.0-3) 12.29 3.7303(—35)
DNB 128 20(—3) 16.77 2.2184(—5)
DN16 128 2.0(—3) 100.49 2.1012(—0)

shown in Table IV. In this case T reflects the fact that the
operator L needs to be inverted at each time step to find u
from v. We observe in this case that the WG DNO is not only
computationally more efficient but also has the least wall-clock
time. For partial differential equations that generate systems of
the form

4
AW S = f(5)

the WG approach appears viable. In particular, equations such
as the Boussinesq system, the Benjamin—Bona—-Mahony equa-
tion, the regularized Benjamin—Ono equation, and the regular-
ized Korteweg—de Vries—Burger equation provide examples of
such systems.

The cost comparison of the three methods for the BQS prob-
lem is shown in Fig. 7, as a function of N. The graph shows

18407 , —

1e+C6 | 1

1e+05 | E

3

1e+04 i

1e+03 | E

1e+02 L

1e+01 1e+02 1e+03

N

FIG.7. BQS cost comparison of the three methods: FD (circles), FS (stars),
DN6 (squares), DNS (crosses), DN16 (triangles), N = 32, 64, 128, 256,
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18+03 T

1e+02 | -

~  les01 | .

1e+00 ¢ 1

1e-01 .
18401 1e+02

N

1e+03

FIG. 8. BQS time comparison of the three methods: FD (vircles), FS
(stars}, DNG (squares), N8 (crosses), DN16 (triangles); N = 32, 64, 128, 256.

that for a small number in N the FS is superior to WG, but as
the problem gets larger, the increasing WG becomes more cost
effective. Figure 8 is a plot of the relation between the wall-
clock time T and the resolution N. Disregarding the quality of
the solution the graphs show that the FD is the most cost
effective method. For small problems the low-genus DN is
favored over high DN, but for larger problems the large DN
should prove more cost effective. The same can be said of the
FS compared with the WG method for any order.

To put the above conclusion in perspective we need to exam-
ine the computational cost as a function of the quality of the
solution. Figure 9 presents such a relation for the BQS problem.
We computed the solution of the BQS using WG DN16 with
N = 1024 and Ar = 107* for the test problem, Eq. (11). We
took the norms for this solution as a benchmark since they
were the lowest ones computed by any of the methods and any
of the discretizations chosen. We chose as a measure of the
error of a particular solution the absolute difference in the [,
norm between the solution and the benchmark at ¢+ = 0.5. It
will be assumed that a measure of the quality of the solution
is given by the inverse of the error.

Figure 9 shows that the viability of a particular method
depends on the size of error that we are willing to deem accept-
able. The graph should be interpreted as being only qualitatively
accurate; for very small error values the curves slope up because
the error calculation has been effected using the norm of a
highly refined discretization which has an accuracy of 107%
Furthermore, there may be some uncertainty in the cost calcula-
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tion. The experiment was conducted on a work station which
was monitored for activity, However, the work station was
connected to a large network and we experienced discrepancies
on the wall-clock values over duplicate runs of at most 10%.
On the other hand, the computed norms over duplicate runs
were replicated to machine precision. The discrepancy in the
wall-clock time component of the cost may account for the
unexpected dip in the DN16 curve.

As evidenced in Fig. 9, for large error values, the FD and
FS methods are most cost effective. For a decrease of an order
of magnitude in the error, however, the FD cost increases by
at least an order of magnitude. Additionally, the graph suggests
that for high accuracy the FD and FS are comparable in cost.
For small errors, this experiment shows that the WG has a clear
advantage over the other methods. The lower genus wavelet
solutions were most cost effective.

5. CONCLUDING DISCUSSION

The wavelet—Galerkin solution was qualitatively compared
with the solution of finite difference and Fourier pseudo-spectral
implementations of the wave equation, the shallow water wave
equation, and the Boussinesq system. Time-stability was as-
sured for all three problems and all three methods by repeated
selection of a variety of time steps. In this selection process
we were guided by the results in [15, 12] for the WG case and
in [11] for the Fourier case. Qur comparisons were based on

COST
5

1e-04 1e-03

Error

1e-08 1e-05 1e-02

FIG. 9. BQS cost comparison of the three methods as a function of the
quality of the solution: FD (circles), S (stars), DN6 (squares), DV8 (crosses),
DN16 (triangles).
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the use of the computational efficiency C.y as the merit criterion,
which is the reciprocal product of the wall-clock time and the
storage requirement,

For the wave equation, based on this criterion, it was found
that the FS was the most efficient. The WG was found to be
comparable in efficiency to the FD method, requiring less stor-
age but more time than the FD.

Unlike the wave equation problem, in the shallow water
wave equation the nature of the solutions may differ consider-
ably from that of the initial conditions. Phase and shape preser-
vation are important issues, and much work has been done
creating FI and FS implementations that perform far better in
these respects than the particular implementations presented in
this study. Nevertheless, these particular implementations are
adequate to compare the three methods. Since our merit value
Ce; does not take into account the regularity of the initial data,
our results regarding the computational efficiency cannot be
taken to represent the general case. With regards to the qualita-
tive characteristics of the solution for the three methods, we
found that for small initial data all methods perform very simi-
larly. However, for large amplitude solutions, particularly when
shock-like solutions are involved, the FS develops ever-increas-
ing small-scale oscillations which will eventually spread to the
whole domain, but it holds reasonably well to the large-scale
features of the solution. The second-order FD solution has the
same phase as the FS and very similar large-scale features. At
the shock front the FD solution overshoots but the oscillation
is confined to the neighborhood of the shock. The WG solution
leads in phase, and its shape is similar to its FD counterpart,
but the overshoot is spread further away from the shock. Three-
point averaging of the solution is found to be effective in
improving the shape of the FS and the WG outcomes. For high
~ (. the WG solution, averaged twice, was best in phase and
shape accuracy, while for modest values of C and FS solution
is best in shape and phase accuracy.

In the BQS problem the challenges are conveying properly
the effect of the regularizing operator L and efficiently effecting
its inversion. Based on our merit criteria the WG method has
a distinct advantage over the other two methods. The WG
method, which is a particular variant of a finite-element proce-
dure, may be a viable alternative to more traditional counter-
parts, such as finite-difference and Fourier-pseudospectral
methods for problems exemplified by the BQS problem. The
FS was the least efficient owing to the fact that the inversion
of L is an O(N?) operation as compared to O(N) for the FD
and WG implementations. However, it should be remembered
that an FFT-based inversion of the operator L could have been
applied to any of the methods examined here, having a signifi-
cant effect in bringing down the operation count of the FS
method.

Our results have been restricted to one spatial dimension; as
far as operational counts are concerned, Weiss and Qian [5]
have two-dimensional estimates which when compared to our
results indicate that the C,; may not scale according to dimen-
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sion in g simple way. However, since the genus DN and the
resolution & = 27 both enter in the computational efficiency
of the wavelet—Galerkin method, these may be exploited in
certain instances to achieve marginal 1o significant resource
economy in the use of the WG approximation in very high
resolution studies, regardless of the number of spatial dimen-
sions.

APPENDIX A: THE CONNECTION COEFFICIENTS

The formulation of solutions will require integrations of
the form

iy d"_ () 4]
Q'l' (‘POQDJ;[

(d no— ), (d,)
f (P; PR ¥4 dx,

where ¢ = d“o/dx?. This expression is an a-term connection
coefficient, or n-tuple. Since ¢ cannot be represented in closed
form for DN > 2 and, by construction, has limited regularity,
analytic calculation of the integral is infeasible, and the numeni-
cal quadrature is often inaccurate as a result of the wildly
oscillating nature of the resulting kernels. An alternative ap-
proach developed by Latto, Resnikoff, and Tenenbaum [1],
which we adopt in this study, recasts the quadrature problem
into a linear algebra calculation. The procedure may be used
with other wavelet basis provided a moment condition is avail-
able and that attention is given to possible wrap-around when
the support of the basis functions extends beyond the periedic
interval. The following is a brief outline of the calculation of
the inner products required in the Galerkin procedure, using
the 2-tuple as an example. Complete details appear in [1, 13].
A different and equally viable approach that the reader may
wish to consider was proposed by Beylkin in [16].

Integration by parts is performed repeatedly on the 2-tuple
integral to obtain

d ,d‘2 — (g l)d Qﬂd2+d

where the periodicity of the wavelets has been invoked. By
changing variables, we further reduce the equation to
0, =

QO‘z kl "‘z k2

where d = d, + d,. From these relations it is clear that any 2-
tuple can be represented by a A{.

To construct the eigenvector problem, fix d, then solve for
{Af}oci< bY creating a system of 2/ homogeneous relations in
Af and enough inhomogeneous equations to reduce the dimen-
sion of the associated eigenspace to 1. Although we are using
the connection-coefficient method for the nonperiodized case,
we are computing them for the periodic case (by equivalence),
which is where the bounds on &k come into play.

First, to form homogeneous relations, we fix 4, j € N, such
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that ¢ is well defined. To simplify notation, denote ¢y =

@4, Since for every 0 = k < 2/,

Af = [ doPi) d

Ml H—)

= j (E hmq)m(z-x)) (2 hlq)fm(bc)) 2dd(2x)
m=0 i=0

=23 S hah | @u20)Pha(20d(20)
mo

=25 Sl | OO )l

thus,
W=l N=3
A:E! = Qd 2 2 hmh{Afflk-m
=0 1=0
where h,, = cm/\/i.

This linear homogeneous system can be represented as
Ax = 2790,
where A = {Af}ycrcri. ‘
Second, we generate enough inhomogeneous relations to
bring down the dimension of the null space to 1. For the 2-
tuple case, this means that a single inhomogeneous relation is

needed. To this end we avail ourselves of the “*moment’” prop-
erty of Daubechies wavelets (cf. [12]), which states that

fgo(x)x*d,x: 0, k=0,.,M—1.

To generate the inhomogeneous equations, we must first
assume d = M — 1. The moment condition then guarantees that

X =" MY,

ez

where M{ = (x4, @). Setting x = 2/f and defining M¢ = (x*,
@), we have

My = 2492214 )y = 24inpLE,
This gives the relation

4= Mi® (D),

€z

which, when differentiated 4 times, yields

127

di= > M)

j{=r

Multiplying by @) and integrating, we obtain

S Mt [ MYy dg = dt [ gy dr = a1,

ef

Thus 2, M{A{ = d12772. The sum over { is actually over [I| =
N — 2 since the ¢'s are compactly supported. Thus, by changing
the indices of summation by ; = [ + | + (N — 2), the
inhomogeneous equations are

IN-3

Z AﬁMi—l—m—'z),

m=1
with
M?f = 27;'(2d+l).'2M?"

The linear system formed by the 2/ homogeneous equations
and the above inhomogeneous equations has eigenspace dimen-
sion 1. Thus, all that remains to specify the system is to calcu-
late M{:

W= [ wtgte = ax = [ (+ nbe() dy
I k ) )
= f > ( ) Vi ey dy
=0 N
ik
=> ( ) riM.

J

Since M? = 1 the above relation is used to evaluate recursively
M4 for all {. The linear system is now complete and fixes the
values of AY.

APPENDIX B: TECHNICAL DATA

The codes were executed on a Sparc 10/51 running SunOS
4.1.3U1. The Fortran Sun compiler used was Fortran Version
1.4 with optimization flags turned off. All runs were performed
in double-precision arithmetic. Wall-clock times reported apply
only to the time integration. Times should be interpreted com-
paratively, since the code contains many diagnostic operations.
All linear algebra operations were performed with general
solvers from LAPACK and the FFT’s were performed with
Paul Swarztrauber’s FFTPACK, version 1989.
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